分数除法的教学反思
作为一名优秀的教师,我们的工作之一就是课堂教学,通过教学反思能很快的发现自己的讲课缺点,那么大家知道正规的教学反思怎么写吗?下面是小编整理的分数除法的教学反思,欢迎大家分享。
分数除法的教学反思1(看了小雒老师的这篇文章,变亦喜亦忧。喜的是,雒老师很用心,解答分数乘除法问题的规律是梳理的一清二楚,头头是道;忧的是,这样教学直奔了目的地,沿途的风光可曾让学生领略?二十年前,我初踏上岗位,熟记的就是文中的所说这个简便易行的口诀。今天,我们教师心中仍然要有这个,但是提醒大家:只让学生记住这个口诀行吗?我们要培养的不是解题的机器。我们应该仔细想一想:这部分教学的过程性目标是什么?学生能从中受益吗?解题过程中学生的思维能不能得到提高?让我们共同讨论~于华静)
最近一段时间,从分数的乘法到分数的除法,对于单纯的计算方法孩子们脸上似乎没有露出愁色。但是对于一直相伴至今的分数应用题,孩子们理解与区别起来似乎确实比较吃力,各种数量关系确实比较难分析、判断。怎样选择一个合适的解答方法,是孩子们掌握这类应用题的关键,对此,我总结以下几点体会:
1、一找、二看、三判断
分数应用题的基础题型是简单的分数乘法应用题,要抓住的就是分数乘法的意义:单位“1”×分率=对应量,包括分数除法应用题,仍然使用的是分数乘法的意义来进行分析解答,所以要把这个关系式吃透,同时还要让学生理解什么是分率,什么是对应的量,从中总结出:“一找:找单位“1”;二看:单位“1”是已知还是未知;三:判断已知用乘法,未知用除法。在简单的分数乘法除法应用题中,反复使用这个解答步骤以达到熟练程度,对后面的较复杂分数应用题教学将有相当大的帮助。
2、弄清对应量、对应分数、单位‘1’
教到复杂的分数应用题时,要抓住例题中最具有代表性的也是最难的两种题型加强训练,就是“已知对应量、对应分率、求单位‘1’”和“比一个数多(少)几分之几”这两种题型,对待前者要充分利用线段图的优势,让学生从意义上明白单位“1”×对应分数=对应量,所以单位“1”=对应量÷对应分数。在训练中牢固掌握这种解题方式,会熟练寻找题中一个已知量也就是“对应量”的对应分数。对于后者,要加强转化训练,要熟练转化“甲比乙多(少)几分之几”变成“甲是乙的1+(或-)几分之几”,对这种转化加强训练后学生就能轻松地从“多(少)几分之几”的关键句中得出“是几分之几”的关键句,从而把较复杂应用题转变成前面所学过的简单应用题。
3、线段图、数量关系、关系转化
(1)画线段图进行分析。对于一些简单的分数应用题,教师要教会学生画线段图,然后引导学生观察线段图,画线段图是强调量在下,率在上。如果单位“1”对应的数量是已知的,就用乘法,找未知数量对应的分率;如果单位“1”对应的数量是未知的,就用方程或除法,找已知数量对应的分率。
(2)找数量关系进行分析。有许多的分数应用题,题目中都有一句关键分率句,教师要引导学生把这一句话翻译成一个等量关系,然后根据这一个数量关系,即可求出题目中的问题,找到解决问题的方向。这一点必须教会给学生。
(3)用按比例分配的方法进行分析。有部分分数应用题,可以把两个数量之间的关系转化为比,然后利用按比例分配的方法进行解答。当然还要鼓励学生学会用多种方法解答。
总之,分数应用题的学习的确有难度,但并非难以理解和接受,我将其以上三点用了六句话进行总结了一下,做分数应用题时,“先找单位1,再看知不知,已知用乘法,未知用除法,比1多
加,比1少则减”.所以只要充分了解教材,了解知识结构中前后知识点的关系,这部分的教学会变得比较轻松。
分数除法的教学反思2《分数与除法》是在学生学习了分数的意义基础上进行教学的,通过这节课的教学,目的是让学生在理解了分数的意义基础上,从除法的角度去理解分数的意义,掌握分数与除法的关系,会用分数表示两个数相除的商。
在讲这节课之前,本来以为是很简单的一节课,学生在理解分数与除法的关系时也一定会很容易,唯一的难点是用除法的意义理解分数的意义,我想只要借助实物圆形纸片给学生演示一下,学生就会理解了,但当我讲完这节课后,才发现我的想法太简单了,我把学生想象成理想化的学生了,这部分知识虽然有一部分学生理解了,但仍有一部分学生在用除法的意义理解分数还很困难。在这节课的教学中,我觉得有以下几方面值得我去思考:
一,在学生用除法的意义理解分数的意义时, 能够借助直观形象的实物图,通过动手操作、演示说明等方法,让学生理解分数的意义,这对于小学生来说,理解起来比较容易。但由于我在教学时,疏忽了个别理解能力较差的学生,在演示说明的时候,叫的学生少,如果能多叫几名同学演示说明,再加上教师的及时点拨,我想这部分学生在理解这一难点时,就会比较容易了。
二、学生不是理想化的学生,不要指望他们什么都会,因为学生之间毕竟存在着很大的差异。在教学“把3张饼平均分给4个同学,每个同学应分多少张饼?”时,我让学生借助圆形纸片在小组内合作进行分割,在学生动手操作时,我才发现有的同学竟然不知道该怎么分,圆纸片拿在手上束手无策,只是眼巴巴地看着其他的同学分;小组的同学分完后,演示汇报时,有很多同学都知道怎么分,但说的不是很明白。在以后的备课过程中,要充分考虑学生的已有知识水平和心理认知特点。
三、小组的全员参与不够。在小组合作进行把3张饼平均分给4个人时,有的小组合作的效果较好,但有的小组有个别同学孤立,不能很好的与人合作,我想,学生在动手操作之前,教师如果能让小组长布置好明确的任务分工,让每个人都有事可做,小组合作的效果就会更好了。
四、在教学设计环节上,学生动手操作的内容过多,使整堂课显得很罗嗦,练习的时间就相对缩短了。在操作这一环节上,我设计了两次动手操作,都是分饼问题,分饼的目的是让学生用除法的意义理解分数的意义,学生分了两次,但还是有的同学理解的不是很透彻,如果只让学生分一次,把这一次的操作活动时间延长一些,汇报演示时让每个类型的学生都有参与展示的机会,我想这样教师就会有充足的时间在学生汇报展示的时候给予指导,使学生真正理解分数的意义。
分数除法的教学反思3“已知一个数的几分之几是多少,求这个数”是抓住乘除法之间的内在联系,让学生通过观察,对比,借助线段图,分析题中的等量关系式,发现这类型的应用题的特点和解答的规律。
教学中注重对知识的概括,对比。复习题与新知,新知与新知的对比,从乘法应用题改成一道除法应用题,很自然地把学生引入到新课中,让学生在对比中发现本课应用题的特点,掌握解题方法,注重新旧知识的联系,留给学生充分的独立思考时间,让学生主动探索学会数学知识。激起学生探索数学知识的欲望,给学生学 ……此处隐藏9969个字……掉“线段图”这根拐棍,引导学生从关键句的字面上来分析、理解,从而发现找“等量关系式”的快捷方法。如:柳树比杨树多 。引导学生分析:①谁与谁相比较?(柳树与杨树相比较)②谁是单位“1”?(杨树)③多 是多“谁”的 ?(多杨树的 )④到底多多少,具体的量怎么算?(杨树× )⑤这句话的意思就是:柳树比杨树多了杨树的 。所以等量关系式应该是怎么样的?(杨树+杨树× =柳树)
当然,还有一种等量关系式:杨树×(1+ )=柳树 可由以下几个问题入手:①柳树比杨树多 ,就是比单位“1”多 ,柳树应该是杨树的几分之几?(1+ = )②即柳树的棵树=杨树的 ,所以等量关系式应该是怎么样的?③根据这个等量关系式,想想用算术方法应该怎么列式?为什么?柳树的棵树和 之间有什么关系?(对应关系,从而导出:对应量÷对应分率=单位“1”的量)。
学生等量关系式找到了,就能很容易用方程或者算术方法解决分数除法问题了。
总之,我通过运用以上的教学方法,达到了非常好教学效果,班级成绩也在学年一路领先。
分数除法的教学反思13为了更好到激发学生主动积极地参与分数除法应用题学习的全过程,引导学生正确理解分数除法应用题的数量关系。因而在设计时,我从学生已有知识出发,抓住知识间的内在联系,通过对分数乘法应用题的转化,使学生了解分数除法应用题的特征,并借助线段图,分析题目中的数量关系,通过迁移、类推、分析、比较,找出分数乘除法应用题的区别和联系及解题规律。
一、关注过程,让学生获得亲身体验。
教学中,为让学生认识解答分数应用题的关键是什么时,我故意不作任何说明,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。
在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,是因为大多数时间我在课堂教学中为了自己省心、学生省力,往往避重就轻,草草带过,舍不得把时间用在过程中,总是急不可待,直奔知识的技能目标,究其根由,在于教师的课堂行为,我缺乏必要的耐心。或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。
因此在今年整体的教学中已经改变了自己的教学方法,尤其在本节课上我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。教师在教学中准确把握自己的地位。教师真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的主体地位,体现了生本主义教育思想。也只有这样才能真正落实《数学课程标准》中,“在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心”的目标,让学生的思维真正得到发展。
二、多角度分析问题,提高能力。
在解答应用题的时候,我通过鼓励学生尽量找出其它方法,让学生从多角度去考虑,这样做拓展了学生思维,引导了学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。
三、在充分的感知、体验的基础上比较分析,水到渠成的完成求“1”的量用方程做或算术法做,沟通了新旧知识的联系,又揭示新知识的本质属性。
四、不仅巩固知识,给不同层次的学生起到不同的教学作用,又能为归纳求“1”的量的应用题的方法奠定基础。
分数除法的教学反思14本课教学的内容是分数除以整数,在教学过程中,让学生理解分数除以整数的意义,掌握分数除以整数的计算方法。有了分数乘法的学习基础,学生们能够很快适应这一课的学习方式。本课的逻辑起点是整数除法的意义,分数乘法的意义和计算方法,以及找一个数的倒数的方法。
为了帮助学生更好地理解分数除以整数的意义和计算方法,教学中,我运用数形结合的教学思想。让学生通过折一折,折出4/7的1/2和4/7的1/3,把符号语言和图形语言很好地结合起来,把抽象的过程直观展示出来,通过学生的动手操作。再在操作的过程中说一说,将文字语言和图形相结合,三管齐下,从而使学生理解分数除以整数的意义和计算方法,完成本节课的重点学习内容。
本节课也存在不足之处,如在学生自主探究与合作交流时时间的把握不够好,没有给学生更多的表达空间。总结方法及优化时应放手让学生多说,在今后的课堂教学中,还得进一步提升教学的素质。
作业反馈:
1、对分数除以整数的计算法则理解不够,除法变成乘法后,除数没有变成相应的倒数。分数除以整数时,应该乘这个整数的倒数。
2、没有正确理解分数除法结果的规律,一个数除以比1小的数,结果比这个数要大。有些比较大小的题目可以不用计算,直接运用计算规律就可以判断出来,但是学生不太会应用。
分数除法的教学反思15本节课的内容是在学生学习整数除法、分数乘法的计算和倒数的基础上进行教学的。本节课的重点是理解分数除法的意义,掌握分数除法的计算方法。
成功之处:
1.找准学生的最近发展区,降低学生学习难度,注重数学思想方法的渗透。在教学中,我通过板书课题:分数除法,让学生进行猜想今天所学的知识与前面所学的知识有什么联系,通过学生的回答,得出与整数除法、分数乘法和倒数有联系。然后在新课的教学中,通过例1学生非常轻易的得出分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中的一个因数,求另一个因数的运算。在例2的教学中,通过折纸过程的演示学生可以清楚的看出:4/5÷2=4/5×1/2=2/5,发现分数除法与分数乘法、倒数之间的联系,从而得出分数除以整数等于分数乘这个整数的倒数。这样通过建立最近发展区,学生丝毫没有感到新知识有多难,而是比较轻松愉快地获得新知识,同时注重了对数学转化思想的渗透,使学生充分感受到在学习中,原来泾渭分明的两种运算,居然可以转化,计算方法的每一步,其实就是新旧知识、方法的转化。
2.重视算法的探索过程,让学生不仅知其然,还要知其所以然。在例2的教学中,以折纸实验为载体,让学生在折一折、涂一涂的过程中逐步发现分数除法的计算方法,诱导学生经历由特殊到一般的探索过程,从中悟出把一个数平均分成几份,就是求这个数的几分之一是多少。在例3的教学中,通过画线段图来验证学生的猜想,从而得出除以一个不为0的数等于乘这个数的倒数。
不足之处:
由于教学了三个例题,内容较多,导致练习的的时间较少,学生对于分数除法的计算不够熟练。
再教设计:
调整教学环节时间的分配,缩短对分数除法意义的教学,整合例2与例3的教学内容,使例3不仅仅通过线段图得出,也可以通过商不变规律、等式的基本性质等不同方法进行验证。