当前位置:首页 > 教学资料 > 教案

初中勾股定理教案

时间:2022-11-26 09:07:39
初中勾股定理教案

初中勾股定理教案

作为一名无私奉献的老师,常常需要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么你有了解过教案吗?下面是小编帮大家整理的初中勾股定理教案,希望对大家有所帮助。

初中勾股定理教案1

教学目标

1.知识与技能目标:探索并理解直角三角形的三边之间的数量关系,通过探究能够发现直角三角形中两个直角边的平方和等于斜边的平方和。

2.过程与方法目标:经历用测量和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理能力.

3.情感态度与价值观目标:通过本节课的学习,培养主动探究的习惯,并进一步体会数学与现实生活的紧密联系。

教学重点

了解勾股定理的由来,并能用它来解决一些简单的问题。

教学难点

勾股定理的探究以及推导过程。

教学过程

一、创设问题情景、导入新课

首先出示:投影1 (章前的图文)并介绍我国古代在勾股定理研究方面的贡献,结合课本第六页谈一谈我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示课件观察后回答:

1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即B的面积为______个单位。

正方形C中有_______个小方格,即C的面积为______个单位。

2、 你是怎样得出上面的结果的?

3、 在学生交流回答的基础上教师进一步设问:图1—2中,A,B,C 面积之间有什么关系?学生交流后得到结论:A+B=C。

二、层层深入、探究新知

1、做一做

出示投影3(书中P3图1—3)

提问:

(1)图1—3中,A,B,C 之间有什么关系?

(2)从图1—2,1—3中你发现什么?

学生讨论、交流后,得出结论:以三角形两直角边为边的正方形的面积和,等于以斜边为边的正方形面积。

2、议一议

图1—2、1—3中,你能用三角形的边长表示正方形的面积吗?

(1)你能发现直角三角形三边长度之间的关系吗?在同学交流的基础上,共同探讨得出:直角三角形两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”。也就是说如果直角三角形的两直角边为a,b,斜边为c那么。

我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。

(2)分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的`规律,对这个三角形仍然成立吗?

3、想一想

我们常见的电视的尺寸:29英寸(74厘米)的电视机,指的是屏幕的长吗?还是指的是屏幕的宽?那他指什么呢?能否运用刚才所学的知识,检验一下电视剧的尺寸是否合格?

三、巩固练习。

1、在图1—1的问题中,折断之前旗杆有多高?

2、错例辨析:△ABC的两边为3和4,求第三边

解:由于三角形的两边为3、4

所以它的第三边的c应满足

=25 即:c=5 辨析:

(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题三角形ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。

(2)若告诉△ABC是直角三角形,第三边C也不一定是满足,题目中并未交待C 是斜边。

综上所述这个题目条件不足,第三边无法求得

四、课堂小结

鼓励学生自己总结、谈谈自己本节课的收获,以及自己对勾股定理的理解,老师加以纠正和补充。

五、布置作业

课下到图书馆查资料或者上网搜集有关勾股定理的发展历程,写成小论文,下节课和同学们一块分

初中勾股定理教案2

一、内容和内容解析

1。内容

应用勾股定理及勾股定理的逆定理解决实际问题。

2。内容解析

运用勾股定理的逆定理可以从三角形边的数量关系来识别三角形的形状,它是用代数方法来研究几何图形,也是向学生渗透“数形结合”这一数学思想方法的很好素材。综合运用勾股定理及其逆定理能帮助我们解决实际问题。

基于以上分析,可以确定本课的教学重点是灵活运用勾股定理的逆定理解决实际问题。

二、目标和目标解析

1。目标

(1)灵活应用勾股定理及逆定理解决实际问题。

(2)进一步加深性质定理与判定定理之间关系的认识。

2。目标解析

达成目标(1)的标志是学生通过合作、讨论、动手实践等方式,在应用题中建立数学模型,准确画出几何图形,再熟练运用勾股定理逆定理判断三角形状及求边长、面积、角度等;

目标(2)能先用勾股定理的逆定理判断一个三角形是直角三角形,再用勾股定理及直角三角形的性质进行有关的计算和证明。

三、教学问题诊断分析

对于大部分学生将实际问题抽象成数学模型并进行解析与应用,有一定的困难,所以在教学时应该注意启发引导学生从实际生活中所遇到的问题出发,鼓励学生以勾股定理及逆定理的知识为载体建立数学模型,利用数学模型去解决实际问题。

本课的教学难点是灵活运用勾股定理及逆定理解决实际问题。

四、教学过程设计

1。复习反思,引出课题

问题1 通过前面的学习,我们对勾股定理及其逆定理的知识有一定的了解,请说出勾股定理及其逆定理的内容。

师生活动:学生回答勾股定理的内容“如果直角三角形的两条直角边长分别为,斜边长为,那么;勾股定理的逆定理“如果三角形的三边长满足,那么这个三角形是直角三角形。

追问:你能用勾股定理及逆定理解决哪些问题?

师生活动:学生通过思考举手回答,教师板书课题。

【设计意图】通过复习勾股定理及其逆定理来引入本课时的学习任务——应用勾股定理及逆定理解决有关实际问题。

2。 点击范例,以练促思

问题2 某港口位于东西方向的海岸线上。“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。它们离开港口一个半小时后相距30海里。如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?

师生活动:学生读题,理解题意,弄清楚已知条件和需解决的问题,教师通过梯次性问题的展示,适时点拨,学生尝试画图、估测、交流中分化难点完成解答。

追问1:请同学们认真审题,弄清已知是什么?解决的问题是什么?

师生活动:学生通过思考举手回答,教师在黑板上列出:已知两种船的航速,它们的航行时间以及相距的路程, “远航”号的航向——东北方向;解决的问题是“海天”号的航向。

追问2:你能根据题意画出图形吗?

师生活动:学生尝试画图,教师在黑板上或多媒体中画出示意图。

追问3:在所画的图中哪个角可以表示“海天”号的航向?图中知道哪个角的度数?

师生活动:学生小组讨论交流回答问题“海天”号的航向只要能确定∠QPR的大小即可。组内讨论解答,小组代表展示解答过程,教师适时点评,多媒体展示规范解答过程。

解:根据题意,

因为

,即

,所以

由“远航”号沿东北方向航行可知

。因此

,即“海天”号沿西北方向航行。

课堂练习1。 课本33页练习第3题。

课堂练习2。 在

港有甲、乙两艘渔船,若甲船沿北偏东

方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度前进,1小时后甲船到达

岛,乙船到达

岛,且

岛与

岛相距17海里,你能知道乙船沿哪个方向航行吗?

【设计意图】学生在规范化的解答过程及练习中,提升对勾股定理逆定理的认识以及实际应用的能力。

3。 补充训练,巩固新知

问题3 实验中学有一块四边形的空地

若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?

师生活动:先由学生独立思考。若学生有想法,则由学生先说思路,然后教师追问:你是怎么想到的?对学生思路中的合理成分进行总结;若学生没有思路,教师可引导学生分析:从所要求的结果出发是要知道四边形的面积,而四边形被它的一条对角线分成两个三角形,求出两个三角形的面积和即可。启发学生形成思路,最后由学生演板完成。

【设计意图】引导学生利用辅助线解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

4。 反思小结,观点提炼

教师引导学生参照下面两个方面,回顾本节课所学的主要内容,进行相互交流:

(1)知识总结:勾股定理以及逆定理的实际应用;

(2)方法归纳:数学建模的思想。

【设计意图】通过小结,梳理本节课所学内容,总结方法,体会思想。

5。布置作业

教科书34页习题17。2第3题,第4题,第5题,第6题。

五、目标检测设计

1。小明在学校运动会上负责联络,他先从检录处走了75米到达起点,又从起点向东走了100米到达终点,最后从终点走了125米,回到检录处,则他开始走的方向是(假设小明走的每段都是直线) ( )

A。南北 B。东西 C。东北 D。西北

【设计意图】考查运用勾股定理的逆定理解决实际生活问题。

2。甲、乙两船同时从

港出发,甲船沿北偏东

的方向,以每小时9海里的速度向

岛驶去,乙船沿另一个方向,以每小时12海里的速度向

岛驶去,3小时后两船同时到达了目的地。如果两船航行的速度不变,且

两岛相距45海里,那么乙船航行的方向是南偏东多少度?

【设计意图】考查建立数学模型,准确画出几何图形,运用勾股定理的逆定理解决实际生活问题。

3。如图是一块四边形的菜地,已知

求这块菜地的面积。

【设计意图】考查利用勾股定理及逆定理将不规则图形转化为直角三角形,巧妙地求解。

《初中勾股定理教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式